Abstract

Depression afflicts more than 300 million people worldwide, but there is currently no universally effective drug in clinical practice. In this study, chronic restraint stress (CRS)-induced mice depression model was used to study the antidepressant effects of resveratrol and its mechanism. Our results showed that resveratrol significantly attenuated depression-like behavior in mice. Consistent with behavioral changes, resveratrol significantly attenuated CRS-induced reduction in the density of dendrites and dendritic spines in both hippocampus and medial prefrontal cortex (mPFC). Meanwhile, in hippocampus and mPFC, resveratrol consistently alleviated CRS-induced cofilin1 activation by increasing its ser3 phosphorylation. In addition, cofilin1 immunofluorescence distribution in neuronal inner peri-membrane in controls, and cofilin1 diffusely distribution in the cytoplasm in CRS group were common in hippocampus. However, the distribution of cofilin1 in mPFC was reversed. Pearson's correlation analysis revealed that there was a significant positive correlation found between the sucrose consumption in sucrose preference test and the dendrite density in multiple sub-regions of hippocampus and mPFC, and a significant negative correlation between the immobility time in tail suspension test and the dendrite/dendritic spine density in several different areas of hippocampus and mPFC. P-cofilin1 was significantly positively correlated with the overall dendritic spine density in mPFC as well as with the overall dendrite density or BDNF in the hippocampus. Our results suggest that the BDNF/cofilin1 pathway, in which cofilin1 may be activated in a brain-specific manner, was involved in resveratrol's attenuating the dendrite and dendritic spine loss and behavioral abnormality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call