Abstract
The antibiotic azithromycin is a suggested alternative to erythromycin for treating patients with delayed gastric emptying. However, although hypothesized to activate motilin receptors, supportive evidence is unavailable. This was investigated using recombinant and naturally expressed motilin receptors in human stomach, comparing azithromycin with erythromycin. [(125)I]-motilin binding and calcium flux experiments were conducted using human recombinant motilin receptors in CHO cells. Neuromuscular activities were studied using circular muscle of human gastric antrum, after electrical field stimulation (EFS) of intrinsic nerves. Azithromycin (1-100 μM) and erythromycin (3-30 μM) concentration-dependently displaced [(125)I]-motilin binding to the motilin receptor (52 ± 7 and 58 ± 18% displacement at 100 and 30 μM respectively). Azithromycin, erythromycin and motilin concentration-dependently caused short-lived increases in intracellular [Ca(2+)] in cells expressing the motilin receptor. EC50 values were, respectively, 2.9, 0.92 and 0.036 μM (n = 3 each); and maximal activities were similar. In human stomach, EFS evoked cholinergically mediated contractions, attenuated by simultaneous nitrergic activation. Azithromycin and erythromycin lactobionate (30-300 μM each) facilitated these contractions (apparent E(max) values of 2007 ± 396 and 1924 ± 1375%, n = 3-4 each concentration, respectively). These actions were slow in onset and faded slowly. The higher concentrations also evoked short-lived muscle contraction. Contractions to a submaximally effective concentration of carbachol were unaffected by either drug. Azithromcyin activates human recombinant motilin receptors in therapeutically relevant concentrations, similar to erythromycin. In humans, gastric antrum azithromycin caused long-lasting facilitation of cholinergic activity. These actions explain the gastric prokinetic activity of azithromycin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.