Abstract

In a previous study, biogenic silver nanoparticles were produced by Lactobacillus fermentum which served as a matrix preventing aggregation. In this study the antibacterial activity of this biogenic silver was compared to ionic silver and chemically produced nanosilver. The minimal inhibitory concentration (MIC) was tested on Gram-positive and Gram-negative bacteria and was comparable for biogenic silver and ionic silver ranging from 12.5 to 50mg/L. In contrast, chemically produced nanosilver had a much higher MIC of at least 500mg/L, due to aggregation upon application. The minimal bactericidal concentration (MBC) in drinking water varied from 0.1 to 0.5mg/L for biogenic silver and ionic silver, but for chemically produced nanosilver concentrations, up to 12.5mg/L was needed. The presence of salts and organic matter decreased the antimicrobial activity of all types of silver resulting in a higher MBC and a slower inactivation of the bacteria. The mode of action of biogenic silver was mainly attributed to the release of silver ions due to the high concentration of free silver ions measured and the resemblance in performance between biogenic silver and ionic silver. Radical formation by biogenic silver and direct contact were found to contribute little to the antibacterial activity. In conclusion, biogenic nanosilver exhibited equal antimicrobial activity compared to ionic silver and can be a valuable alternative for chemically produced nanosilver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.