Abstract
Background: Renal cancer is one of the most common malignancies. However, the mechanisms underlying its development are still ambiguous. B7-H3 has been described as an important tumor antigen in various human tumors. An abnormal high expression of B7-H3 molecules is often observed in tumor cells and tumor stromal cells in the tumor microenvironment. On the basis of the above findings, we hypothesized that cancer-associated fibroblasts (CAFs) clustered in the renal cell microenvironment can survive for a long time with the anti-apoptotic effect of B7-H3, and then secrete cytokines to enhance the malignant behavior of renal cancer cells.Methods: The expression of B7-H3 protein in CAFs was detected in renal cancer tissues. Then, the CAFs cells were stably transfected with shRNA and their expression was silenced to determine the role of B7-H3 in CAFs. Western blot was used to detect the expression of apoptosis-related proteins, hepatocyte growth factor (HGF) protein and stromal cell-derived factor-1 (CXCL12) protein. CAF-NC cells and CAFs-shRNA cells were co-cultured with A498 cells to assess the biological function changes of A498.Results: A group of CAFs were found with B7-H3 expression in renal cancer. B7-H3 can stimulate CAFs to secrete HGF and Cxcl-12, and has strong anti-apoptotic effect on CAFs. We also found that CAFs-NC promotes the proliferation, invasion and migration of A498 cells in vitro and promotes the tumor formation of A498 in vivo.Conclusion: B7-H3+ CAFs promote the invasion and metastasis in renal cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.