Abstract

Abnormal angiogenesis plays a critical role in the pathogenesis of various diseases such as cancer and chronic inflammation. A variety of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), exert their action through endothelial receptor tyrosine kinases (RTKs). The synthetic phenylpropenone derivatives, used in this study were the following: 1,3-diphenyl-propenone (DPhP), 3-phenyl-1-thiophen-2-yl-propenone (PhT2P), 3-phenyl-1-thiophen-3-yl-propenone (PhT3P) and 1-furan-2-yl-3-phenyl-propenone (FPhP). These derivatives were screened for their inhibitory effect on VEGF-induced angiogenesis in vitro using HUVECs and in vivo using chick chorioallantoic membrane (CAM). The order of anti-angiogenic activity was DPhP>FPhP>PhT3P>PhT2P. The most effective compound DPhP, also known as chalcone, showed weak VEGF receptor tyrosine kinase activity compared with the specific inhibitor, SU4312 (3-[[4-(dimethylamino)phenyl]methylene]-1,3-dihydro-2H-indol-2-one). However, DPhP also inhibited several other receptor tyrosine kinases including Tie-2, epithermal growth factor (EGF) receptor, EphB2, fibroblast growth factor (FGF) receptor 3 and insulin-like growth factor-1 (IGF-1) receptor, as revealed by a receptor tyrosine kinase array assay. In addition, the down-stream signaling, including ERK phosphorylation and NF-κB activation, after receptor activation was significantly inhibited by DPhP. Furthermore, in the HT29 human colon cancer cell-inoculated CAM assay, the tumor growth and tumor-induced angiogenesis was significantly inhibited by DPhP (10μg/ml). These results suggest that the simple flavonoid, DPhP (chalcone), has valuable potential as an antiangiogenic and anti-cancer agent, and its action is mediated through the inhibition of multi-target RTKs including VEGF receptor 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.