Abstract

Edible bird’s nest (BN) is a Chinese traditional medicine with innumerable health benefits, including anti-viral, anti-inflammatory, neuroprotective, and immunomodulatory effects. A small number of studies have reported the anti-viral effects of EBN against influenza infections using in vitro and in vivo models, highlighting the importance of sialic acid and thymol derivatives in their therapeutic effects. At present, studies have reported that EBN suppresses the replicated virus from exiting the host cells, reduces the viral replication, endosomal trafficking of the virus, intracellular viral autophagy process, secretion of pro-inflammatory cytokines, reorient the actin cytoskeleton of the infected cells, and increase the lysosomal degradation of viral materials. In other models of disease, EBN attenuates oxidative stress-induced cellular apoptosis, enhances proliferation and activation of B-cells and their antibody secretion. Given the sum of its therapeutic actions, EBN appears to be a candidate that is worth further exploring for its protective effects against diseases transmitted through air droplets. At present, anti-viral drugs are employed as the first-line defense against respiratory viral infections, unless vaccines are available for the specific pathogens. In patients with severe symptoms due to exacerbated cytokine secretion, anti-inflammatory agents are applied. Treatment efficacy varies across the patients, and in times of a pandemic like COVID-19, many of the drugs are still at the experimental stage. In this review, we present a comprehensive overview of anti-viral and anti-inflammatory effects of EBN, chemical constituents from various EBN preparation techniques, and drugs currently used to treat influenza and novel coronavirus infections. We also aim to review the pathogenesis of influenza A and coronavirus, and the potential of EBN in their clinical application. We also describe the current literature in human consumption of EBN, known allergenic or contaminant presence, and the focus of future direction on how these can be addressed to further improve EBN for potential clinical application.

Highlights

  • Edible bird’s nest (EBN) is a nest produced from the salivary secretion of swiftlets such as Aerodramus sp. and Callocalia sp., which are commonly found in the South-East Asian regions

  • Recent reports on global mortality caused by seasonal influenza indicate up to 290,000 to 650,000 deaths associated with respiratory illnesses alone (Iuliano et al, 2018), and the Global Burden of Disease Study (GBD) attributed 99,000 to 200,000 annual deaths from lower respiratory tract infections directly to influenza (GBD 2017 Influenza Collaborators, 2019)

  • We described the pathogenesis of Influenza A virus (IAV) and SARS-CoV-2 infections, current anti-viral medications in clinical practice for both infections, chemical compositions, and potential benefits of EBN as an anti-viral, anti-inflammatory, antioxidant, and immunomodulatory agent in the treatment of IAV and SARS-CoV-2 infections

Read more

Summary

INTRODUCTION

Edible bird’s nest (EBN) is a nest produced from the salivary secretion of swiftlets such as Aerodramus sp. and Callocalia sp., which are commonly found in the South-East Asian regions. For its anti-viral effect, EBN water extracts significantly reduced hemagglutination activity of IAV (H1N1, H3N2, and H5N1) in a dose-dependent manner (Guo et al, 2006; Haghani et al, 2017; Nuradji et al, 2018), with increasing efficacy when the treatment duration is prolonged (Haghani et al, 2017). EBN (from house nest) with and without enzymatic treatment reduced virus titer, with a percentage of protection 42.47 ± 8 and 45.42 ± 8.4, respectively (Haghani et al, 2017) In line with these findings, Guo et al (2006) reported significant inhibitory effects of EBN with pancreatic enzyme digestion on hemagglutination activity of IAV, whereas little effects when treated with EBN without the pancreatic enzymes. EBN from Gua Madai recorded the highest percentage of protection against

Summary of findings
Findings
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.