Abstract

Glycolysis is essential to the parasitic protozoan Trypanosoma brucei. The first step in this metabolic pathway is mediated by hexokinase, an enzyme that transfers the γ-phosphate of ATP to a hexose. The T. brucei genome (TREU927/4 GUTat10.1) encodes two hexokinases (TbHK1 and TbHK2) that are 98% identical at the amino acid level. Our previous efforts have revealed that TbHK2 is an important regulator of TbHK1 in procyclic form parasites. Here, we have found through RNAi that TbHK1 is essential to the bloodstream form parasite. Silencing the gene for 4 days reduces cellular hexokinase ∼60% and leads to parasite death. Additionally, we have found that the recombinant enzyme is inhibited by lonidamine (IC 50 = 850 μM), an anti-cancer drug that targets tumor hexokinases. This agent also inhibits HK activity from whole parasite lysate (IC 50 = 965 μM). Last, lonidamine is toxic to cultured bloodstream form parasites (LD 50 = 50 μM) and procyclic form parasites (LD 50 = 180 μM). Interestingly, overexpression of TbHK1 protects PF parasites from lonidamine. These studies provide genetic evidence that TbHK1 is a valid therapeutic target while identifying a potential molecular target of the anti-trypanosomal agent lonidamine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.