Abstract

Hydrogen sulfide (H2S) known as a gasotransmitter is increasingly recognized for its anti-adhesive, anti-inflammatory and vasoactive properties. Due to these properties, we analysed anti-thrombotic effects of H2S and the participation of the nitric oxide synthase (NOS)-pathway. In individual venules of the ear of hairless SKH1-hr mice, thrombus formation was induced using a phototoxic light/dye-injury model and intravital fluorescence microscopy. Animals were treated intravenously with the H2S donor Na2S or NaCl as control. In a second setting, the NOS inhibitor L-NAME was applied intraperitoneally as a bolus 12h prior to Na2S treatment and thrombus induction. Blood and ear tissue were sampled after microscopy for assessment of plasma concentrations of soluble (s)P-selectin, sE-selectin, sVCAM-1 and sICAM-1 and expression of endothelial (e)NOS and inducible (i)NOS, respectively. When mice were treated with Na2S, venular thrombus formation was significantly delayed versus that in animals of the NaCl-treated control group. While plasma levels of pro-thrombotic adhesion molecules were not affected by Na2S, immunohistochemistry of the vessel walls showed a significant up-regulation of eNOS and iNOS expression within the Na2S-treated group. The delay of thrombus formation in the Na2S-group was partly but significantly reverted by application of L-NAME. The anti-thrombotic efficacy of H2S involves the NOS-pathway and may be of preventive and therapeutic value for clinical disorders with increased risk of thrombotic events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.