Abstract

BackgroundThere is evidence from human and animal research that 5-hydroxytryptamine (5-HT) 3 receptor antagonists, particularly tropisetron, exert analgesic and anti-inflammatory activity. We have demonstrated that tropisetron inhibited lipopolysaccharide (LPS)-stimulated tumor necrosis factor (TNF)alpha and interleukin-(IL-)1beta release in primary human monocytes. The underlying mechanisms of these effects have not been investigated in detail so far. MethodsThe molecular mechanisms of the anti-inflammatory effects of tropisetron were investigated in human primary monocytes in vitro by studying IL-1beta and TNFalpha mRNA levels by PCR and reporter gene assay and by elucidating the phosphorylation of p38 mitogen activated kinase (MAPK) by Western blot. ResultsThe steady state levels of IL-1beta and TNFalpha mRNA in LPS-activated human peripheral monocytes and the transcriptional activity of the TNFalpha promoter were not inhibited by tropisetron, suggesting that the inhibitory activity of this 5-HT3 receptor antagonist takes place at the post-transcriptional level. Additionally, we found that tropisetron prevents the phosphorylation and thus activation of the p38 MAPK, which is involved in post-transcriptional regulation of various cytokines. ConclusionOur data indicate that the anti-inflammatory effects of the 5-HT3 receptor antagonist tropisetron, as shown in vivo, are possibly mediated by a selective inhibition of pro-inflammatory cytokines at the post-transcriptional level. 5-HT3 receptor antagonists are therefore a new and promising therapeutic option. New and more selective – in respect to the 5-HT3 subtypes – 5-HT3R antagonists might be a future perspective in the pharmacological treatment of inflammatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call