Abstract

The disseminated neoplastic foci of malignant gliomas are essentially responsible for the limited efficacy of current available therapeutic modalities. Bone marrow-derived stem cells (BMSCs) have the ability to migrate into these tumors and even track infiltrating tumor cells, making them to be promising cellular vehicles for delivering therapeutic agents to glioma cells. The herpes simplex virus thymidine kinase (HSV-TK)/ganciclovir (GCV) suicide gene therapy with a potent bystander effect has been considered as one of the most promising therapeutic strategies for malignant gliomas. In this study, we evaluate the anti-glioma effect of suicide gene therapy using BMSCs expressing HSV-TK combined with overexpression of connexin 43 (Cx43), which can restore the gap junction of intercellular communication and may enhance the bystander effect of suicide gene therapy. To assess the potential of BMSCs to track glioma cells, a spheroid co-culture system in matrigel was used to show that some BMSCs migrated to C6 glioma cell microspheres. Transwell assay showed the tumor tropic property of BMSCs. In addition, BrdU-labeled BMSCs injected directly into the cerebral hemisphere opposite to the established C6 rat gliomas were capable of migrating into the xenograft gliomas. C6 cell growth was more intensively inhibited by HSV-TK/GCV treatment mediated by BMSCs, and could be further enhanced by combination with Cx43 transfection into glioma cells. The same result was observed in vivo by the growth of C6 gliomas and the survival analysis of rats bearing C6 glioma. In conclusion, Cx43 combined with HSV-TK/GCV gene therapy using BMSCs as vehicles was highly effective in a rat glioma model and therefore hold great potential as a novel approach for the gene therapy of human malignant gliomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.