Abstract
ObjectiveTo explore the anti-caries efficacy of three fluoride compounds at increasing maturation of a microcosm biofilm. DesignMicrocosm biofilm, obtained from saliva collected from three donors (IRB #1406440799), was grown on enamel samples (n = 18/group) for 24-h (Brain Heart Infusion; 0.2 % sucrose). Then, pH cycling model started. Three maturations were explored (4d, 8d, and 12d). The pH cycling consisted of daily 2 × 5 min treatments (NaF, SnF2, AmF: 287.5 ppm F, and de-ionized water [DIW]), 4 × 10 min remineralization (BHI, no sucrose, pH 7.0), and 3 × 2:15 h demineralization (BHI, 1% sucrose, pH 4.5). We analyzed the enamel (surface microhardness [VHNchange], integrated mineral loss [ΔZ], lesion depth [L]), and the biofilm (viability [log10 CFU/mL], lactic acid production [LDH], and exopolysaccharide [EPS] amount). Data were analyzed using two-way ANOVA (p = 0.05). ResultsThe interaction between tested variables was significant for VHNchange, viability, LDH, EPS (p = 0.0354, p = 0.0001, p < 0.0001, p < 0.0001), but not for L (p = 0.2412) or ΔZ (p = 0.6811). LDH and EPS analyses exhibited more tolerance of mature biofilm against NaF (LDH and EPS p < 0.0001); NaF-treated groups demonstrated significantly lower results than the control in the 12d group. The effect of SnF2 and AmF continued over time. VHNchange, L, and ΔZ: The effect of SnF2 and AmF was higher than NaF and DIW. L and ΔZ did not result in significant differences over time (all treatments). Within each maturation, fluoride compounds demonstrated statistically significantly lower L and ΔZ values than DIW. ConclusionsBiofilm’s maturation may influence the selection of fluoride compounds to achieve an optimum cariostatic effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.