Abstract

This study aimed to investigate the antibiofilm and remineralising effects of peptide GAPI on artificial dentin caries. After creating artificial carious lesions, eighty dentine blocks were randomly assigned for treatment twice daily with GAPI (GAPI group) or deionised water (control group). Both groups underwent a 7-day biochemical cycle. Scanning electron microscopy (SEM) showed S. mutans with damaged structures that partially covered the dentine in the GAPI group. The dead-live ratios for the GAPI and control groups were 0.77 ± 0.13 and 0.37 ± 0.09 (p < 0.001). The log colony-forming units for the GAPI and control groups were 7.45 ± 0.32 and 8.74 ± 0.50 (p < 0.001), respectively. The lesion depths for the GAPI and control groups were 151 ± 18 µm and 214 ± 15 µm (p < 0.001), respectively. The mineral losses for the GAPI and control groups were 0.91 ± 0.07 gHAcm-3 and 1.01 ± 0.07 gHAcm-3 (p = 0.01), respectively. The hydrogen-to-amide I ratios for the GAPI and control groups were 2.92 ± 0.82 and 1.83 ± 0.73 (p = 0.014), respectively. SEM micrographs revealed fewer exposed dentine collagen fibres in the GAPI group compared to those in the control group. Furthermore, X-ray diffraction (XRD) patterns indicated that the hydroxyapatite in the GAPI group was more crystallised than that in the control group. This study demonstrated GAPI's antibiofilm and remineralising effects on artificial dentin caries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.