Abstract

Recently, considerable scientific and therapeutic interest has focused on the structure and functions of the flavonoids. In a previous study, we suggested that hydroxyl (OH) substitutions on specific carbons in the skeleton of the flavonoids might significantly affect their apoptosis-modulating properties. Here, to investigate the effect of various OH substitutions on their diphenylpropane (C6C3C6) skeleton carbons, we selected 10 different flavonoids and assessed their role on UV-induced apoptosis of human keratinocytes, the principal cell type of epidermis. The results showed that 5,7,3',4'-tetrahydroxylflavanone (eriodictyol) and 3,4'-dihydroxy flavone (3,4'-DHF) had a positive effect on cell proliferation of human HaCaT keratinocytes. Treatment with eriodictyol in particular resulted in significant suppression of cell death induced by ultraviolet (UV) light, a major skin-damaging agent. We found that eriodictyol treatment apparently reduced the percentage of apoptotic cells and the cleavage of poly(ADP-ribose) polymerase, concomitant with the repression of caspase-3 activation and reactive oxygen species (ROS) generation. The anti-apoptotic and anti-oxidant effects of eriodictyol were also confirmed in UV-induced cell death of normal human epidermal keratinocyte (NHEK) cells. Taken together, these findings suggest that eriodictyol can be used to protect keratinocytes from UV-induced damage, implying the presence of a complex structure-activity relationship (SAR) in the differential apoptosis-modulating activities of various flavonoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.