Abstract

2-Deoxyglucose (2-DG) is a glucose analogue and has been shown to inhibit angiogenesis in human umbilical vascular endothelial cells (HUVECs) through interference with N-linked glycosylation. However, the anti-angiogenic mechanisms of 2-DG are not fully elucidated. We first employed an ex vivo rat aortic ring model to substantiate the anti-angiogenic action of 2-DG and then used HUVECs to investigate the molecular mechanism underlying such an action. Results reveal that 2-DG (0.05-1.0mM) significantly inhibited tube formation in both rat aortic rings and HUVECs. 2-DG (0.1-1.0mM) also significantly inhibited cell invasion and migration, as well as the activity and mRNA and protein expression of matrix metalloproteinase (MMP)-2 in HUVECs. In addition, 2-DG (1.0mM) significantly inhibited mRNA and protein expression of vascular endothelial growth receptor 2 (VEGFR2) in a time-dependent manner. 2-DG also significantly inhibited the phosphorylation of the focal adhesion kinase (FAK) and mitogen-activated protein kinase (p38), the downstream molecules of VEGFR2. The effects of 2-DG on tube formation, MMP-2 activity, and VEGFR2 protein expression in HUVECs were reversed by mannose, an N-linked glycosylation precursor. Mannose also reversed 2-DG-induced accumulation of VEGFR2 in the endoplasmic reticulum. This ex vivo and in vitro study demonstrates that 2-DG inhibits angiogenesis with an action involving attenuation of VEGFR2 signaling and MMP-2 expression, possibly resulting from interference with N-linked glycosylation of VEGFR2. Further studies are needed to show that 2-DG inhibits VEGF-mediated angiogenesis or that the actual status of N-glycosylation of VEGFR2 is affected by the treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.