Abstract
BackgroundIn previous works we have shown that a low-molecular-mass (LMM) fraction from mushroom (Lentinus edodes) homogenate interferes with binding of Streptococcus mutans to hydroxyapatite and Prevotella intermedia to gingival cells. Additionally, inhibition of biofilm formation of both odonto- and periodonto-pathogenic bacteria and detachment from preformed biofilms have been described for this compound. Further purification of mushroom extract has been recently achieved and a sub-fraction (i.e. # 5) has been identified as containing the majority of the mentioned biological activities. The aim of this study was to characterise the bacterial receptors for the purified mushroom sub-fraction #5 in order to better elucidate the mode of action of this compound when interfering with bacterial adhesion to host surfaces or with bacteria-bacteria interactions in the biofilm state.MethodsCandidate bacterial molecules to act as target of this compound were bacterial surface molecules involved in cell adhesion and biofilm formation, and, thus, we have considered cell wall associated proteins (CWPs), teichoic acid (TA) and lipoteichoic acid (LTA) of S. mutans, and outer membrane proteins (OMPs) and lipopolysaccharide (LPS) of P. intermedia.ResultsFifteen S. mutans CWPs and TA were capable of binding sub-fraction #5, while LTA did not. As far as P. intermedia is concerned, we show that five OMPs interact with sub-fraction # 5. Capacity of binding to P. intermedia LPS was also studied but in this case negative results were obtained.ConclusionsBinding sub-fraction # 5 to surface molecules of S. mutans or P. intermedia may result in inactivation of their physiological functions. As a whole, these results indicate, at molecular level, the bacterial surface alterations affecting adhesion and biofim formation. For these antimicrobial properties, the compound may find use in daily oral hygiene.
Highlights
In previous works we have shown that a low-molecular-mass (LMM) fraction from mushroom (Lentinus edodes) homogenate interferes with binding of Streptococcus mutans to hydroxyapatite and Prevotella intermedia to gingival cells
In previous work we has shown that low-molecularmass (LMM) fractions from either mushroom (Lentinus edodes) or red chicory (Cichorium intybus) homogenates interfere with binding of S. mutans cells to HA and Prevotella intermedia cells to gingival cells [7,8]
We considered cell wall associated proteins (CWPs), teichoic acid (TA) and lipoteichoic acid (LTA) of S. mutans and outer membrane proteins (OMPs) and lipopolysaccharide (LPS) of P. intermedia
Summary
In previous works we have shown that a low-molecular-mass (LMM) fraction from mushroom (Lentinus edodes) homogenate interferes with binding of Streptococcus mutans to hydroxyapatite and Prevotella intermedia to gingival cells. Dental caries and gingivitis are two infectious diseases affecting a worldwide population and are the result of accumulation of the dental plaque, a polymicrobial biofilm on both tooth and gum surfaces [1,2]. Caries results from an acidic demineralisation of tooth hydroxyapatite (HA) produced by specific odontopathogenic bacteria (mainly Streptococcus mutans) in the presence of fermentable carbohydrates e.g. sucrose. Gingivitis (gum inflammation) results from accumulation of a heterogeneous subgingival plaque in which strict anaerobes dominate [3,4]. Overgrowth of strict anaerobes causes production of increased amounts of both bacterial toxins and catabolites. These are toxic for gingival cells and result in cell death and tissue inflammation. Inhibition or reduction of dental plaque accumulation by various means is considered one of the best approaches to accomplish an effective prevention of diseases [1,2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.