Abstract

BackgroundThe esophagus of blood-feeding schistosomes has been largely neglected although its posterior portion was designated as a gland decades ago. However, we recently showed it plays a pivotal role in blood processing. It is clearly demarcated into anterior and posterior compartments, both surrounded by a mass of cell bodies. Feeding movies revealed that erythrocytes accumulate in the anterior compartment before entering the posterior, indicating that a distinct process is executed there. We therefore investigated ultrastructural aspects and possible functions of the anterior region.MethodsThe heads of adult Schistosoma japonicum were detached and prepared for both transmission and scanning electron microscopy to define the detailed ultrastructure of the anterior esophagus. Cryosections of heads were also prepared for immunocytochemistry and confocal microscopy to define the pattern of intrinsic host antibody binding in the anterior esophageal lining.ResultsThe anterior syncytial lining of the esophagus is highly extended by long, thin corrugations of cytoplasm projecting towards the lumen. Strikingly in the male worm, the tips of the corrugations are further expanded by numerous threads of cytoplasm, producing a spaghetti-like appearance in the central lumen. Flattened, pitted cytoplasmic plates are interspersed in the tangled mass of threads. Abundant, morphologically distinct light vesicles of varied size and contents are manufactured in the cell bodies, from where they traffic through cytoplasmic connections to the corrugations and out to the tips. Clusters of vesicles accumulate in expanded tips in males, together with occasional mitochondria whilst females have more mitochondria but fewer vesicles. The membranous contents of light vesicles are secreted mainly from the tips, but also from the sides of the corrugations. They coat the surfaces and then form organised self-adherent membrane figures when shed into the lumen. Host antibody binds strongly in a characteristic pattern to the anterior esophageal lining indicating that the secretions are highly immunogenic.ConclusionsWe suggest that the anterior esophageal region is an independent secretory organ. The contents of light vesicles are released into the esophageal lumen via the tips of corrugation to interact with incoming blood. Our immediate task is to establish their composition and role in blood processing.

Highlights

  • The esophagus of blood-feeding schistosomes has been largely neglected its posterior portion was designated as a gland decades ago

  • The tegument of S. japonicum has some unique structural features The syncytial tegument that covers the surface of adult male and female S. japonicum differs in a number of respects from that of S. mansoni

  • An unusual feature of the central region is a prominent network of short blind-ending membrane-bound channels running through the cytoplasm; these appear to connect to the sides or base of the pits

Read more

Summary

Introduction

The esophagus of blood-feeding schistosomes has been largely neglected its posterior portion was designated as a gland decades ago. We recently showed it plays a pivotal role in blood processing It is clearly demarcated into anterior and posterior compartments, both surrounded by a mass of cell bodies. Erythrocytes are uncoated as they pass down the esophagus [5] while leucocytes become tethered in the posterior region to form a plug-like mass in which they are damaged or even destroyed [6] Consistent with these functions, the esophagus has a complex, highly organised structure and is lined by syncytial cytoplasm, continuous with that of the tegument. The presence of a glandular structure around the posterior esophagus was established by electron microscopy more than 35 years ago [7,8,9] It comprises a roughly spherical mass of cells linked to the lining syncytium by cytoplasmic connections through the muscle layer. The lining of the posterior region is expanded >25 fold in surface area by regular plate-like extensions of cytoplasm into the lumen [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call