Abstract
Antenna is the main chemosensory organ in mosquitoes. Characterization of the transcriptional changes after blood meal, especially those related to chemoreception, may help to explain mosquito blood sucking behavior and to identify novel targets for mosquito control. Anopheles sinensis is an Asiatic mosquito species which transmits malaria and lymphatic filariasis. However, studies on chemosensory biology in female An. sinensis are quite lacking. Here we report a transcriptome analysis of An. sinensis female antennae pre- and post- blood meal. We created six An. sinensis antenna RNA-seq libraries, three from females without blood meal and three from females five hours after a blood meal. Illumina sequencing was conducted to analyze the transcriptome differences between the two groups. In total, the sequenced fragments created 21,643 genes, 1,828 of them were novel. 12,861 of these genes were considered to be expressed (FPKM >1.0) in at least one of the two groups, with 12,159 genes expressed in both groups. 548 genes were differentially expressed in the blood-fed group, with 331 genes up-regulated and 217 genes down-regulated. GO enrichment analysis of the differentially expressed genes suggested that there were no statistically over represented GO terms among down-regulated genes in blood-fed mosquitoes, while the enriched GO terms of the up-regulated genes occurred mainly in metabolic process. For the chemosensory gene families, a subtle distinction in the expression levels can be observed according to our statistical analysis. However, the firstly comprehensive identification of these chemosensory gene families in An. sinensis antennae will help to characterize the precise function of these proteins in odor recognition in mosquitoes. This study provides a first global view in the changes of transcript accumulation elicited by blood meal in An. sinensis female antennae.
Highlights
Mosquitoes are generally considered one of the most harmful vectors of many diseases caused by viruses and parasites due to their blood-feeding behavior [1]
The present study mainly focuses on identifying genes related to host detection and location from An. sinensis antennae
The above steps were repeated twice until six Antenna transcriptome in Anopheles sinensis samples were obtained from three biological replicates
Summary
Mosquitoes are generally considered one of the most harmful vectors of many diseases caused by viruses and parasites due to their blood-feeding behavior [1]. Antenna transcriptome in Anopheles sinensis mosquito species which transmits some of the most prevalent human parasitic diseases, including malaria and lymphatic filariasis, affecting humans in Southeast Asia [2, 3]. The species is highly susceptible to Plasmodium vivax [4], and was found an increasing vectorial capacity in recent outbreak of malaria in China [5]. Traditional methods such as insecticide-treated nets and indoor residual spraying are facing mosquitoes’ developing resistance and changing behavior [6]. Understanding and exploiting the proximate mechanisms of host location in mosquitoes may help to reduce their interaction with human hosts and prevent the transmission of infectious diseases
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.