Abstract
Myocardial stretch elicits a biphasic contractile response: the Frank-Starling mechanism followed by the slow force response (SFR) or Anrep effect. In this study we hypothesized that the SFR depends on epidermal growth factor receptor (EGFR) transactivation after the myocardial stretch-induced angiotensin II (Ang II)/endothelin (ET) release. Experiments were performed in isolated cat papillary muscles stretched from 92 to 98% of the length at which maximal twitch force was developed (L(max)). The SFR was 123 +/- 1% of the immediate rapid phase (n = 6, P < 0.05) and was blunted by preventing EGFR transactivation with the Src-kinase inhibitor PP1 (99 +/- 2%, n = 4), matrix metalloproteinase inhibitor MMPI (108 +/- 4%, n = 11), the EGFR blocker AG1478 (98 +/- 2%, n = 6) or the mitochondrial transition pore blocker clyclosporine (99 +/- 3%, n = 6). Stretch increased ERK1/2 phosphorylation by 196 +/- 17% of control (n = 7, P < 0.05), an effect that was prevented by PP1 (124 +/- 22%, n = 7) and AG1478 (131 +/- 17%, n = 4). In myocardial slices, Ang II (which enhances ET mRNA) or endothelin-1 (ET-1)-induced increase in O(2)() production (146 +/- 14%, n = 9, and 191 +/- 17%, n = 13, of control, respectively, P < 0.05) was cancelled by AG1478 (94 +/- 5%, n = 12, and 98 +/- 15%, n = 8, respectively) or PP1 (100 +/- 4%, n = 6, and 99 +/- 8%, n = 3, respectively). EGF increased O(2)() production by 149 +/- 4% of control (n = 9, P < 0.05), an effect cancelled by inhibiting NADPH oxidase with apocynin (110 +/- 6% n = 7), mKATP channels with 5-hydroxydecanoic acid (5-HD; 105 +/- 5%, n = 8), the respiratory chain with rotenone (110 +/- 7%, n = 7) or the mitochondrial permeability transition pore with cyclosporine (111 +/- 10%, n = 6). EGF increased ERK1/2 phosphorylation (136 +/- 8% of control, n = 9, P < 0.05), which was blunted by 5-HD (97 +/- 5%, n = 4), suggesting that ERK1/2 activation is downstream of mitochondrial oxidative stress. Finally, stretch increased Ser703 Na(+)/H(+) exchanger-1 (NHE-1) phosphorylation by 172 +/- 24% of control (n = 4, P < 0.05), an effect that was cancelled by AG1478 (94 +/- 17%, n = 4). In conclusion, our data show for the first time that EGFR transactivation is crucial in the chain of events leading to the Anrep effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.