Abstract

AbstractThe Swiss waste management programme foresees that low‐ and intermediate‐level radioactive waste will be disposed of in a deep geological repository constructed in Opalinus Clay. Gas generation is expected in the repository due to the decomposition of organic materials and the corrosion of metals, with carbon steel being the primary source. The corrosion behaviour of mild steel under anoxic conditions has been studied over the course of several years to better understand the long‐term hydrogen evolution profile under anticipated repository conditions. Steel, either bare or encased within mortar, was tested in water vapour or immersed in electrolytes representative of aged cement waters at 50°C. The corrosion rate was measured indirectly through the hydrogen analysis using a solid‐state probe. The hydrogen evolution behaviour of grout was also monitored to more accurately determine the hydrogen generating from the corrosion of the embedded steel. For steel in water vapour or in alkaline environments, embedded in cementitious material or immersed in simulated aged cement pore water, corrosion rates were invariably <1 nm/year after several years of analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call