Abstract

The origin of the anomeric effect has been reexamined in a coordinated experimental and computational investigation. The results of these studies implicate a number of different, but correlated, interactions that in the aggregate are responsible for the anomeric effect. No single factor is uniquely responsible for the axial preference of a substituent that is the hallmark of the anomeric effect. A CH···G nonbonded attraction between a polar axial substituent (G) and the syn-axial hydrogen(s) in the heterocycle has been demonstrated experimentally. The hyperconjugation model involving electron transfer from a ring heteroatom to an excited state of an axial C-G bond was shown to be, at most, a minor contributor because of the very small changes in charge density at the ring heteroatom(s): the main charge transfer is from hydrogen to G in the H-C-G unit. This appears to result from lengthening the C-G bond to minimize repulsion with the ring atom lone pair(s) and the advantage of having a more positive hydrogen that leads to a stabilizing Coulombic interaction with the ring heteroatom(s). In short, the anomeric effect arises mainly from two separate CH···G nonbonded Coulombic attractions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call