Abstract

The value of the electron's magnetic moment is a fundamental quantity in physics. Its deviation from the value expected from Dirac theory has given enormous impetus to the field of quantum theory and especially to quantum electrodynamics (QED) as the relativistic quantum field theory of electrodynamics. In fact, the measured values both for free and for bound electrons are explained by corresponding QED calculations on the part per trillion and part per billion level of accuracy, respectively. This agreement is amongst the best known in physics today. In turn, it allows highly precise determinations of related fundamental constants like the fine structure constant α or the electron mass. The present article discusses the application of the continuous Stern–Gerlach effect to the precise measurement of magnetic moments, especially of the electron bound in highly charged ions and possible tests of calculations in the framework of QED of bound states. Also, a test of QED in a more general approach by the comparison of values for the fine structure constant derived from different measurements, will be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call