Abstract

The nature of the intramolecular hydrogen bond in the enol tautomer of 2,4-pentanedione has been investigated by high resolution proton and deuteron magnetic resonance spectroscopy. An unusually large deuterium isotope effect on the chemical shift of the bridge hydrogen has been observed. This unexpected result, together with the observation of a pronounced temperature dependence for both the proton and deuteron resonances, suggests that two states with different chemical shifts for the bridge hydrogen are involved in rapid equilibrium and that the anomalous deuterium isotope effect has its origin in the effect of deuterium substitution on the energy separation between these states. It is proposed that these states correspond to the symmetrical and asymmetrical structures of the intramolecular hydrogen bond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.