Abstract

The polarization behaviour of zinc in alkaline solution has been investigated using atomic emission spectroelectrochemistry. By independently measuring the oxidation rate of zinc (electrical current) and the rate of Zn 2+ dissolution (partial elemental current) it is possible to calculate the amount of insoluble zinc cations produced at any instant. Assuming the insoluble cations are present as a zinc oxide film, the growth of this film as a function of potential and time was determined. On the basis of kinetic evidence, it was found that at least three forms of zinc based oxide/hydroxide films form during polarization experiments. Type I oxide formation occurs when the metal/electrolyte interface becomes locally saturated with Zn 2+ ions. Type II oxide forms on the metal surface underneath the film of Type I oxide but has little inhibiting effect on zinc dissolution. Type III oxide is produced in much smaller quantity and results in a transition to the passive state. This may be due to a potential induced transition of Type II → Type III oxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.