Abstract

AbstractThe seasonal cycle of the Earth radiation budget is investigated by use of data from the Clouds and the Earth’s Radiant Energy System (CERES). Monthly mean maps of reflected solar flux and Earth-emitted flux on a 1° equal-angle grid are used for the study. The seasonal cycles of absorbed solar radiation (ASR), outgoing longwave radiation (OLR), and net radiation are described by use of principal components for the time variations, for which the corresponding geographic variations are the empirical orthogonal functions. Earth’s surface is partitioned into land and ocean for the analysis. The first principal component describes more than 95% of the variance in the seasonal cycle of ASR and the net radiation fluxes and nearly 90% of the variance of OLR over land. Because one term can express so much of the variance, principal component analysis is very useful to describe these seasonal cycles. The annual cycles of ASR are about 100 W m−2 over land and ocean, but the amplitudes of OLR are about 27 W m−2 over land and 15 W m−2 over ocean. The magnitude of OLR and its time lag relative to that of ASR are important descriptors of the climate system and are computed for the first principal components. OLR lags ASR by about 26 days over land and 42 days over ocean. The principal components are useful for comparing the observed radiation budget with that computed by a model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.