Abstract

CD44 isoforms, such as CD44s (the standard form), contain at least one ankyrin-binding site within the 70-amino acid (aa) cytoplasmic domain and several hyaluronic acid (HA)-binding sites within the extracellular domain. To study the role of CD44s-ankyrin interaction in regulating human prostate tumor cells, we have constructed several CD44s cytoplasmic deletion mutants that lack the ankyrin-binding site(s). These truncated cDNAs were stably transfected into CD44-negative human prostate tumor cells (LNCaP). Our results indicate that a critical region of 15-amino acids (aa) between aa 304 and aa 318 of CD44s is required for ankyrin binding. Biochemical analyses, using competition binding assays with a synthetic peptide containing the 15 aa between aa 304 and aa 318 (NSGNGAVEDRKPSGL), further support the conclusion that this region contains the ankyrin-binding domain of CD44s. Deletion of this 15-aa ankyrin-binding sequence from CD44s results in a drastic reduction of HA-mediated binding/cell adhesion, Src p60 kinase(s) interaction and anchorage-independent growth in soft agar. These findings suggest that the binding of cytoskeletal proteins, such as ankyrin, to the cytoplasmic domain of CD44s plays a pivotal role in regulating HA-mediated functions as well as Src kinase activity and prostate tumor cell transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call