Abstract
The rearrangements of 1,5-hexadiene-3-oxide and 3-methyl-1,5-hexadiene-3-oxide have been studied in the gas phase, using both Fourier transform mass spectrometry (FTMS) and the flowing afterglow (FA) technique. Gas-phase studies of ionic rearrangements can be limited by analysis techniques such as collision-induced dissociation, which have the potential of driving the rearrangement prior to fragmentation. In the studies reported here, we have utilized methanol-O-d, methyl nitrite, and dimethyl disulfide as chemical reactivity probes to discern whether rearrangement of either of the alkoxides to their corresponding enolates occurs. Of the three structural probe reagents, dimethyl disulfide has been found to be most ideal, since it reacts efficiently with both alkoxides and enolates to produce a unique product from each. On the basis of the reactions observed between dimethyl disulfide and anions generated from 1,5-hexadien-3-ol and 3-methyl-1,5-hexadien-3-ol, we have found that the gas-phase Cope rearrangement of both tertiary and secondary alkoxides occurs under both FTMS and FA conditions. Use of dimethyl disulfide in the FTMS and evaluation of ion residence time in the FA lead to the establishment of an upper limit on the Delta H(*) of the rearrangement of both the parent secondary and tertiary substrates as approximately 11 kcal mol(-1) at 298 K. This value is consistent with our B3LYP/6-31+G* prediction. The rearrangement is also faster in the gas phase than in solution, in accord with theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.