Abstract

The anharmonic oscillator driven by Gaussian noise is studied in the limit of weak damping using the direct perturbation (DPM) and Markov approximation (MAM) methods. Mean values are obtained to first order in the anharmonic coupling constant g. From a careful treatment of the high-frequency behavior it is concluded that to first order in g the DPM takes high-frequency contributions into account whereas the MAM does not, while both agree if high-frequency contributions are not important. It is also shown that both methods give the same results to second order in g for the quartic anharmonic oscillator. The spectral density of the noise used in stochastic electrodynamics is considered as a particular example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.