Abstract
AbstractIn the context of the formation of spiral galaxies the evolution and distribution of the angular momentum of dark matter halos have been discussed for more than 20 years, especially the idea that the specific angular momentum of the halo can be estimated from the specific angular momentum of its disk (e.g. Fall & Efstathiou (1980), Fall (1983) and Mo et al. (1998)). We use a new set of hydrodynamic cosmological simulations called Magneticum Pathfinder which allow us to split the galaxies into spheroidal and disk galaxies via the circularity parameter ϵ, as commonly used (e.g. Scannapieco et al. (2008)). Here, we focus on the dimensionless spin parameter λ = J |E|1/2 / (G M5/2) (Peebles 1969, 1971), which is a measure of the rotation of the total halo and can be fitted by a lognormal distribution, e.g. Mo et al. (1998). The spin parameter allows one to compare the relative angular momentum of halos across different masses and different times. Fig. 1 reveals a dichotomy in the distribution of λ at all redshifts when the galaxies are split into spheroids (dashed) and disk galaxies (dash-dotted). The disk galaxies preferentially live in halos with slightly larger spin parameter compared to spheroidal galaxies. Thus, we see that the λ of the whole halo reflects the morphology of its central galaxy. For more details and a larger study of the angular momentum properties of disk and spheroidal galaxies, see Teklu et al. (in prep.).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.