Abstract

The effect of full-field sinusoidal visual roll motion stimuli of various frequencies and peak velocities upon the orientation of subjective visual vertical (SV) was studied. The angle of the optokinetically induced displacement of SV was found to be a linear function of the logarithm of the stimulus oscillation angle. Interindividual slopes of this function varied between 2 and 9. The logarithmic function is independent of stimulus frequency within the range of .02 Hz to .5 Hz and of peak stimulus velocity from 7.5°/sec to 170°/sec. It holds for oscillation angles up to 100°–140°. With larger rotational angles, saturation is reached. With small stimulus angles, a surprisingly high threshold (5°-8°) was observed in our experiments. This may reflect the unphysiological combination of visual roll stimuli without corroborating vestibular and proprioceptive inputs normally present when body sway produces visual stimulation. Under natural conditions, the visual feedback about spontaneous sway stabilizes body posture by integrating rotational velocity over stimulus duration which is equal to rotational angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.