Abstract
In a previous study, we observed that angiotensin(1-7) (Ang(1-7)) stimulates proximal tubule Na+-ATPase activity through the angiotensin receptor type 1 (AT1R). Here we aimed to study the signalling pathways involved. Our results show that the stimulatory effect of Ang(1-7) on Na+-ATPase activity through AT1R involves a Gq protein-phosphatidyl inositol-phospholipase Cbeta (PI-PLCbeta) pathway because: (1) the effect was reversed by GDPbetaS, a non-hydrolysable GDP analogue, and by a monoclonal Gq protein antibody; (2) the effect was similar and not additive to that of GTPgammaS, a non-hydrolysable GTP analogue; (3) Ang(1-7) induced a rapid decrease (30 s) in phosphatidylinositol 4,5-bisphosphate levels, a PI-PLCbeta substrate; and (4) U73122, a specific inhibitor of PI-PLCbeta, abolished Ang(1-7)-induced stimulation of Na+-ATPase activity. Angiotensin(1-7) increased the protein kinase C (PKC) activity similarly to phorbol-12-myristate-13-acetate (PMA), an activator of PKC. This effect was reversed by losartan, a specific antagonist of AT1R. The stimulatory effects of Ang(1-7) and PMA on Na+-ATPase activity are similar, non-additive and reversed by calphostin C, a specific inhibitor of PKC. A catalytic subunit of PKC (PKC-M) increased the Na+-ATPase activity. These data show that Ang(1-7) stimulates Na+-ATPase activity through the AT1R-Gq protein-PI-PLCbeta-PKC pathway. This effect is similar to that described for angiotensin II, showing for the first time that these compounds could have similar effects in the renal system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.