Abstract

BackgroundAn environment of gestational diabetes mellitus (GDM) can modify the phenotype of stem cell populations differentially according to their placental localization, which can be useful to study the consequences for the fetus. We sought to explore the effect of intrauterine GDM exposure on the angiogenic properties of human amniotic membrane stem cells (hAMSCs).MethodsWe comprehensively characterized the angiogenic phenotype of hAMSCs isolated from 14 patients with GDM and 14 controls with normal glucose tolerance (NGT). Maternal and fetal parameters were also recorded. Hyperglycemia, hyperinsulinemia and palmitic acid were used to in vitro mimic a GDM-like pathology. Pharmacological and genetic inhibition of protein function was used to investigate the molecular pathways underlying the angiogenic properties of hAMSCs isolated from women with GDM.ResultsCapillary tube formation assays revealed that GDM-hAMSCs produced a significantly higher number of nodes (P = 0.004), junctions (P = 0.002) and meshes (P < 0.001) than equivalent NGT-hAMSCs, concomitant with an increase in the gene/protein expression of FGFR2, TGFBR1, SERPINE1 and VEGFA. These latter changes were recapitulated in NGT-hAMSCs exposed to GDM-like conditions. Inhibition of the protein product of SERPINE1 (plasminogen activator inhibitor 1, PAI-1) suppressed the angiogenic properties of GDM-hAMSCs. Correlation analyses revealed that cord blood insulin levels in offspring strongly correlated with the number of nodes (r = 0.860; P = 0.001), junctions (r = 0.853; P = 0.002) and meshes (r = 0.816; P = 0.004) in tube formation assays. Finally, FGFR2 levels correlated positively with placental weight (r = 0.586; P = 0.028) and neonatal adiposity (r = 0.496; P = 0.014).ConclusionsGDM exposure contributes to the angiogenic abilities of hAMSCs, which are further related to increased cord blood insulin and fetal adiposity. PAI-1 emerges as a potential key player of GDM-induced angiogenesis.

Highlights

  • An environment of gestational diabetes mellitus (GDM) can modify the phenotype of stem cell popu‐ lations differentially according to their placental localization, which can be useful to study the consequences for the fetus

  • GDM exposure contributes to the angiogenic abilities of human amniotic membrane stem cells (hAMSCs), which are further related to increased cord blood insulin and fetal adiposity

  • PAI-1 emerges as a potential key player of GDM-induced angiogenesis

Read more

Summary

Methods

Study population Twenty-seven pregnant women (14 with GDM and 14 with NGT, acting as controls) scheduled for cesarean delivery, were recruited at the Hospital Universitari de Tarragona Joan XXIII over 32 months. To mimic the GDM-like environment for capillary-tube formation assays, control hAMSCs were serum-deprived in DMEM/F12 supplemented with 0.2% BSA (Sigma-Aldrich, St. Louis, MO) at least 2 h prior to a 24-h (for tube formation analysis) or 48-h stimulation (for protein analysis) with glucose, insulin and palmitic acid at a final concentration of 30 mM, 100 nM and 50 μM, respectively. Tube formation assay Analysis of capillary formation was performed using an extracellular gel matrix from Engelbreth-Holm-Swarm mouse sarcoma cells (Sigma-Aldrich). Serum-deprived (2 h) hAMSCs were treated for 3 h with alofanib (1–5 μM), SB-431542 (10–50 μM) or TM5275 sodium (50–100 μM) diluted in DMEM/F12 with 0.2% BSA prior to the tube formation assay. A P-value < 0.05 was considered statistically significant in all analyses

Results
Conclusions
Background
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call