Abstract

BackgroundAutologous fat grafting is often a crucial aspect of reconstructive and aesthetic surgeries, yet poor graft retention is a major issue with this technique. Enriching fat grafts with adipose tissue-derived mesenchymal stem cells (AD-MSCs) improves graft survival—however, AD-MSCs represent a heterogeneous population. Selection of subpopulations of AD-MSCs would allow the targeting of specific AD-MSCs that may benefit fat graft survival more than the general AD-MSC population.MethodsHuman AD-MSCs were selected for the surface marker CD271 using magnetic-activated cell sorting and compared to the CD271 negative phenotype. These subpopulations were analysed for gene expression using Real-Time qPCR and RNA sequencing; surface marker characteristics using immunostaining; ability to form tubules when cultured with endothelial cells; and gene and protein expression of key angiogenic mediators when cultured with ex-vivo adipose tissue.ResultsHuman AD-MSCs with the surface marker CD271 express angiogenic genes at higher levels, and inflammatory genes at lower levels, than the CD271− AD-MSC population. A greater proportion of CD271+ AD-MSCs also possess the typical complement of stem cell surface markers and are more likely to promote effective neoangiogenesis, compared to CD271− AD-MSCs.ConclusionEnriching grafts with the CD271+ AD-MSC subpopulation holds potential for the improvement of reconstructive and aesthetic surgeries involving adipose tissue.

Highlights

  • Autologous fat grafting is often a crucial aspect of reconstructive and aesthetic surgeries, yet poor graft retention is a major issue with this technique

  • We propose that a more targeted therapeutic approach is required, whereby subpopulations of cells from the stromal vascular fraction (SVF) are selected for their angiogenic characteristics

  • Identification, extraction, and characterisation of CD271+ adipose tissue-derived mesenchymal stem cells (AD-MSCs) Staining of sections of human adipose tissue (AT) revealed that CD271 was found exclusively around vascular structures, confirmed by co-localisation with CD31 staining (Fig. 1), suggesting that CD271+ AD-MSCs are involved in vascular function in vivo

Read more

Summary

Introduction

Autologous fat grafting is often a crucial aspect of reconstructive and aesthetic surgeries, yet poor graft retention is a major issue with this technique. The stromal vascular fraction (SVF), derived from human adipose tissue (AT), contains AD-MSCs, among many other cell types, and exhibits regenerative potential for various indications including burns, nerve injury, and fractures [3]. Underpinning this potential, AD-MSCs have been shown to release several growth factors in vitro, including the angiogenic markers hepatocyte growth factor (HGF), transforming growth factor beta (TGF-β), and vascular endothelial growth factor A (VEGFA), at levels that assist recovery from ischemia in mice and could potentially improve tissue survival [4]. We propose that a more targeted therapeutic approach is required, whereby subpopulations of cells from the SVF are selected for their angiogenic characteristics

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.