Abstract

IntroductionMyocardial infarction (MI) induces irreversible tissue damage, eventually leading to heart failure. Exogenous induction of angiogenesis positively influences ventricular remodeling after MI. Recently, we could show that therapeutic angiogenesis by the neuropeptide catestatin (CST) restores perfusion in the mouse hind limb ischemia model by the induction of angio-, arterio- and vasculogenesis. Thus, we assumed that CST might exert beneficial effects on cardiac cells. Methods/resultsTo test the effect of CST on cardiac angiogenesis in-vitro matrigel assays with human coronary artery endothelial cells (HCAEC) were performed. CST significantly mediated capillary like tube formation comparable to vascular endothelial growth factor (VEGF), which was used as positive control. Interestingly, blockade of bFGF resulted in abrogation of observed effects. Moreover, CST induced proliferation of HCAEC and human coronary artery smooth muscle cells (HCASMC) as determined by BrdU-incorporation. Similar to the matrigel assay blockade of bFGF attenuated the effect. Consistent with these findings western blot assays revealed a bFGF-dependent phosphorylation of extracellular-signal regulated kinase (ERK) 1/2 by CST in these cell lines. Finally, CST protected human cardiomyocytes in-vitro from apoptosis. ConclusionCST might qualify as potential candidate for therapeutic angiogenesis in MI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.