Abstract

Thymic regeneration is a crucial function that allows for the generation of mature T cells after myelosuppression like irradiation. However molecular drivers involved in this process remain undefined. Here, we report that the angiogenic factor, epidermal growth factor-like domain 7 (Egfl7), is expressed on steady state thymic endothelial cells (ECs) and further upregulated under stress like post-irradiation. Egfl7 overexpression increased intrathymic early thymic precursors (ETPs) and expanded thymic ECs. Mechanistically, we show that Egfl7 overexpression caused Flt3 upregulation in ETPs and thymic ECs, and increased Flt3 ligand plasma elevation in vivo. Selective Flt3 blockade prevented Egfl7-driven ETP expansion, and Egfl7-mediated thymic EC expansion in vivo. We propose that the angiogenic factor Egfl7 activates the Flt3/Flt3 ligand pathway and is a key molecular driver enforcing thymus progenitor generation and thereby directly linking endothelial cell biology to the production of T cell-based adaptive immunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.