Abstract

The Andaman day gecko (Phelsuma andamanensis) is endemic to the Andaman Archipelago, located ~ 6000 km away from Madagascar where the genus Phelsuma likely evolved. We complemented existing phylogenetic data with additional markers to show that this species consistently branches off early in the evolution of the genus Phelsuma, and this early origin led us to hypothesize that island populations within the Andaman Archipelago could have further diversified. We sampled the Andaman day gecko from all major islands in the Andamans, developed new microsatellite markers and amplified mitochondrial markers to study population diversification. We detected high allelic diversity in microsatellites, but surprisingly poor geographical structuring. This study demonstrates that the Andaman day gecko has a panmictic population (K = 1), but with weak signals for two clusters that we name ‘North’ (North Andaman, Middle Andaman, Interview, Baratang, Neil, and Long Islands) and ‘South’ (Havelock, South Andaman, Little Andaman Islands). The mitochondrial COI gene uncovered wide haplotype sharing across islands with the presence of several private haplotypes (except for the Little Andaman Island, which only had an exclusive private haplotype) signalling ongoing admixture. This species differs from two other Andaman endemic geckos for which we provide comparative mitochondrial data, where haplotypes show a distinct phylogeographic structure. Testing population history scenarios for the Andaman day gecko using Approximate Bayesian Computation (ABC) supports two possible scenarios but fails to tease apart whether admixture or divergence produced the two weak clusters. Both scenarios agree that admixture and/or divergence prior to the onset of the last glacial maximum shaped the genetic diversity and structure detected in this study. ABC supports population expansion, possibly explained by anthropogenic food subsidies via plantations of cash crops, potentially coupled with human mediated dispersal resulting in the observed panmictic population. The Andaman day gecko may thus be a rare example of an island endemic reptile benefiting from habitat modification and increased movement in its native range.

Highlights

  • The Andaman day gecko (Phelsuma andamanensis) is endemic to the Andaman Archipelago, located ~ 6000 km away from Madagascar where the genus Phelsuma likely evolved

  • A molecular phylogeny reconstructed using four mitochondrial and nine nuclear genes from 15 species including the Namaqua day gecko [Rhoptropella ocellata (Boulenger, 1885)] and Bradfield’s Dwarf Gecko (Lygodactylus bradfieldi Hewitt, 1932) as outgroups confirms that the Andaman day gecko has an isolated phylogenetic position (Fig. 2)

  • While a thorough time calibration of the Phelsuma tree is beyond the scope of the present paper, previous studies (e.g.,29) placed the Phelsuma crown age at around 30 million years (MYA), and the TimeTree database estimated the divergence between the Andaman day gecko and the Madagascar day gecko (Phelsuma madagascariensis Gray, 1831) at ~ 27 ­MYA30, suggesting that the Andaman day gecko is an ancient lineage

Read more

Summary

Introduction

The Andaman day gecko (Phelsuma andamanensis) is endemic to the Andaman Archipelago, located ~ 6000 km away from Madagascar where the genus Phelsuma likely evolved. The mitochondrial COI gene uncovered wide haplotype sharing across islands with the presence of several private haplotypes (except for the Little Andaman Island, which only had an exclusive private haplotype) signalling ongoing admixture This species differs from two other Andaman endemic geckos for which we provide comparative mitochondrial data, where haplotypes show a distinct phylogeographic structure. Testing population history scenarios for the Andaman day gecko using Approximate Bayesian Computation (ABC) supports two possible scenarios but fails to tease apart whether admixture or divergence produced the two weak clusters. Both scenarios agree that admixture and/or divergence prior to the onset of the last glacial maximum shaped the genetic diversity and structure detected in this study. Phylogeographic studies on four bat s­ pecies[12] and the Andaman keelback snake (Fowlea tytleri (Blyth, 1863))[13] showed substantial levels of genetic diversity, structure and varying degrees of inter-island population differentiation in mitochondrial DNA

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call