Abstract

Panoramic images of 12CO J = 1-0 and thermal dust emissions from the W3-W4-W5 region of the outer Galaxy are presented. These data and recently published H I 21 cm line emission images provide an approximate 1' resolution perspective to the dynamics and thermal energy content of the interstellar gas and dust components contained within a 9 deg. arc of the Perseus spiral arm. We tabulate the molecular properties of 1560 clouds identified as closed surfaces within the l-b-v CO data cube at a threshold of 0.9 K T* (sub R). Relative surface densities of the molecular (28:1) and atomic (2.5:1) gas components determined within the arm and interarm velocity intervals demonstrate that the gas component that enters the spiral arm is predominantly atomic. Molecular clouds must necessarily condense from the compressed atomic material that enters the spiral arm and are likely short lived within the interarm regions. From the distribution of centroid velocities of clouds, we determine a random cloud-to-cloud velocity dispersion of 4 km s (exp. -1) over the width of the spiral arm but find no clear evidence within the molecular gas for streaming motions induced by the spiral potential. The far-infrared images are analyzed with the CO J = 1-0 and H I 21 cm line emission. The enhanced UV (Ultraviolet) radiation field from members of the Cas OB6 association and embedded newborn stars provide a significant source of heating to the extended dust component within the Perseus arm relative to the quiescent cirrus regions. Much of the measured far-infrared flux (69% at 60 micrometers and 47% at 100 micrometers) originates from regions associated with star formation rather than the extended, infrared cirrus component.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call