Abstract

A monopolar GaAs Fabry–Pérot cavity laser based on the Gunn effect is studied both experimentally and theoretically. The light emission occurs via the band-to-band recombination of impact-ionized excess carriers in the propagating space-charge (Gunn) domains. Electroluminescence spectrum from the cleaved end-facet emission of devices with Ga1−xAlxAs (x=0.32) waveguides shows clearly a preferential mode at a wavelength around 840 nm at T=95 K. The threshold laser gain is assessed by using an impact ionization coefficient resulting from excess carriers inside the high-field domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.