Abstract

The ubiquitous store-operated Ca2+ entry pathway mediated by plasma membrane Ca2+ release-activated Ca2+ (CRAC) channels regulates a wide variety of physiological functions. While it is clearly established that the ORAI1 protein is essential for native mammalian CRAC channels, the contribution of ORAI2 and ORAI3 have remained nebulous. The crystal structure of the sole Orai isoform in drosophila (dOrai) revealed a hexameric assembly, suggesting that mammalian CRAC channels are hexamers of ORAI. Nevertheless, the relative contribution of each isoform of the mammalian ORAI trio to the stoichiometry of native CRAC channels remains elusive. The recent generation of ORAI isoform single, double and triple knockout cell lines and tissue-specific knockout mice has shed light on how native ORAI isoform heteromerization fine tunes CRAC-mediated Ca2+ signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.