Abstract

This article considers the stochastic fractional Radhakrishnan-Kundu-Lakshmanan equation (SFRKLE), which is a higher order nonlinear Schrödinger equation with cubic nonlinear terms in Kerr law. To find novel elliptic, trigonometric, rational, and stochastic fractional solutions, the Jacobi elliptic function technique is applied. Due to the Radhakrishnan-Kundu-Lakshmanan equation’s importance in modeling the propagation of solitons along an optical fiber, the derived solutions are vital for characterizing a number of key physical processes. Additionally, to show the impact of multiplicative noise on these solutions, we employ MATLAB tools to present some of the collected solutions in 2D and 3D graphs. Finally, we demonstrate that multiplicative noise stabilizes the analytical solutions of SFRKLE at zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.