Abstract

What is meant under the genuine title of Aristotle’s ta Analytika is rarely properly understood. Presumably, his analytics was inspired by the method of geometric analysis. For Aristotle, this was a regressive or heuristic procedure, departing from a proposed conclusion (or prob­lem) and asking which premises could be found in order to syllogize, demonstrate or explain it. The terms that form categorical and modal propositions play a fundamental role in analytics. Aristotle introduces letters in lieu of the triples of terms (major – middle – minor) constitut­ing the propositions and the three syllogistic figures that schematize them. His formulation of the three syllogistic figures refers to a syntacti­cal and predicative order and position of the triples of terms, arranged in some diagrammed schemata, which, regrettably, are missing from the extant text of the Prior Analytics. Considering planar and graphic arrangements, both vertical and horizontal orders as well as the posi­tion of the three terms involved, we propose a reconstruction, at least to some extent, of these probable lettered diagrams. In such reconstructed diagrams, we can appropriately capture the definition of syllogism as a predicative connexion of terms, and easier survey a synoptic account of all valid predicative relations and transpositions, and also reduce the imperfect syllogisms into the moods of the first figure. Aristotle’s syllogistic is an analytical calculation of terms, understood as predicates and subjects within the categorical propositions, and more precisely of three terms schematized in three figures in predicative links such that, by means of a middle, follows from necessity a conclusion of the extreme terms. The necessity of the consequence is not based on the implication or inference of the propositions, but on a predictive transi­tivity through the middle term within the syllogistic figures. Syllogism must draw its conclusion through the way its terms are predicated of one another. Aristotle in his Prior Analytics (I 3, 8–22) developed also a complex account of modal syllogisms within necessity and possibility of belonging (predicating). This account involves also such an analyti­cal reduction to the syllogistic figures. In this analytical perspective, we try to throw some light on his modal syllogisms, although this difficult and nowadays thoroughly discussed topic would require a much wider treatment.

Highlights

  • Similmente sono detti elementi anche dei diagrammi, e in generale delle dimostrazioni

  • Il trattato in quattro libri di Aristotele τὰ Ἀναλυτικὰ πρότερα καὶ ὕστερα costituisce una delle le più importanti opere che hanno contribuito a costituire in grandissima misura la tradizione della logica formale, al punto che Kant nella Prefazione alla Critica della Ragione Pura (1787, B VIII) nutrì la convinzione che dopo i tempi di Aristotele non siano state conseguiti nella logica apprezzabili progressi, e “secondo ogni apparenza, essa sembra essere conclusa e compiuta”

  • 21 Recentemente lo ha confermato Ebrey (2015: 185): „I argue that Aristotle thinks that to meet the explanatory requirement a syllogism must draw its conclusion through the way its terms are predicated of one another”

Read more

Summary

La traduzione presa da Berti 1993

Conversione necessaria del conseguente e antecedente, come nelle argomentazioni matematiche che non assumono nulla di accidentale Senz’altro tale scoperta costituiva per lui una fonte di ispirazione per una più profonda penetrazione della genesi analitica dei sillogismi tramite le tre figure, in modo da poter avere questa capacità di sillogizzare, il cui più splendido frutto sono gli Analitici, noti poi come primi. Un altro testo è molto istruttivo in merito, dove gli elementi delle dimostrazioni sono intesi propriamente come diagrammata, cioè grafici o schemi visivi, con riferimento ai sillogismi primari, ossia a quelli perfetti della prima delle tre figure, schematizzati da tre termini mediante un medio. Prima di definire in generale il sillogismo Aristotele ne fornisce i due suoi elementi costitutivi dei quali l’analisi si serve, cioè la protasi (πρότασις) e il termine (ὅρος) con le loro formule predicative, affermative e negative, universali e particolari. Pertanto si noti che gli elementi analitici del sillogismo appunto sono ὅρος e πρότασις e non premesse e conclusione. 19 Ciò è stato dimostrato in modo, a mio avviso, convincente da Cavini 2011

20 I miei precedenti interventi sull’argomento sono
22 Per una trattazione approfondita si veda
36 Tra gli studi più importanti si vadano soprattutto
40 Su questo si veda Natali 1991
41 A questo proposito si veda

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.