Abstract
The purpose of this study is the derivation of a closed-form formula for Green’s function in elliptic coordinates that could be used for achieving an analytic solution for the second-order diffraction problem by elliptical cylinders subjected to monochromatic incident waves. In fact, Green’s function represents the solution of the so-called locked wave component of the second-order velocity potential. The mathematical analysis starts with a proper analytic formulation of the second-order diffraction potential that results in the inhomogeneous Helmholtz equation. The associated boundary-value problem is treated by applying Green’s theorem to obtain a closed-form solution for Green’s function. Green’s function is initially expressed in polar coordinates while its final elliptic form is produced through the proper employment of addition theorems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.