Abstract

AbstractThe analytic connectivity (AC), defined via solving a series of constrained polynomial optimization problems, serves as a measure of connectivity in hypergraphs. How to compute such a quantity efficiently is important in practice and of theoretical challenge as well due to the non‐convex and combinatorial features in its definition. In this article, we first perform a careful analysis of several widely used structured hypergraphs in terms of their properties and heuristic upper bounds of ACs. We then present an affine‐scaling method to compute some upper bounds of ACs for uniform hypergraphs. To testify the tightness of the obtained upper bounds, two possible approaches via the Pólya theorem and semidefinite programming respectively are also proposed to verify the lower bounds generated by the obtained upper bounds minus a small gap. Numerical experiments on synthetic datasets are reported to demonstrate the efficiency of our proposed method. Further, we apply our method in hypergraphs constructed from social networks and text analysis to detect the network connectivity and rank the keywords, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call