Abstract

In this paper, we propose a stochastic method to project the public pension fund in the public pension system (PPS). For this we introduce the stochastic differential equations for the three parts: the premium revenue, the benefit expenditure, and the fund process. From these we show that the solution of the aggregated fund process is the sum of log-normals, which is approximated as one log-normal for the analytic result. Related to the parameter estimations, we implement the moment matching in the first moment. For the second moment, we apply the extreme value method following Parkinson. In order to follow Parkinson, we take the maximum and the minimum range of the fund amount based on the various sensitivity result as well as the baseline one from the deterministic projection result. In this reason, it is naturally to maintain the close interrelation with the deterministic projection result, which is very important since it is still key result in the actuarial valuation of the PPS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.