Abstract

The aim of this paper is to analyze a tandem queueing model with two stages. The arrivals to the first stage are Poisson stream and the service time at this stage is exponential. There is no waiting room at first stage. The service time is hyperexponential and no waiting is allowed at second stage. The transition probabilities and loss probabilities of this model are obtained. In addition, the loss probability at second stage is optimized. Performance measures and the variance of the numbers of customers of this tandem queueing model are found. It is seen that the numbers of customers in first stage and second stage are dependent. Finally we have simulated this queueing model. For different values of parameters, exact values, simulated values, and optimal values of obtained performance measures of this model are numerically shown in tables and graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.