Abstract
This review analyzes the problems caused by heavy wear of loaded friction elements of structures, which is typical of almost all industries. This implies the importance of solving problems of increasing their durability. Of particular relevance is the need to solve the problem of improving wear resistance of contact surfaces of special-purpose shut-off valves, being an irreplaceable component of technical equipment used in the oil and gas industry as well as processing industries, nuclear energy, and medicine. It is shown that the effectiveness of solving problems of increasing durability of equipment is largely associated with additional standard processing of loaded friction elements of such structures, and with the improvement of technologies for increasing wear resistance and strength characteristics of their contact surfaces. The analysis of the possibilities of increasing wear resistance by mechanical methods of surface treatment, as well as by methods of surface modification through various functional coatings has been made. It is substantiated that the vacuum-arc method of ion-plasma spraying of a multilayer nanocomposite coating is the most promising way of creating a functional coating to increase the wear resistance of valves. Widespread industrial introduction of the method of beam surface modification of materials makes it possible to obtain such structural-phase states of materials, which are not possible with traditional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Image Journal of Advanced Materials and Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.