Abstract
Two-way functional data consist of a data matrix whose row and column domains are both structured, for example, temporally or spatially, as when the data are time series collected at different locations in space. We extend one-way functional principal component analysis (PCA) to two-way functional data by introducing regularization of both left and right singular vectors in the singular value decomposition (SVD) of the data matrix. We focus on a penalization approach and solve the nontrivial problem of constructing proper two-way penalties from one-way regression penalties. We introduce conditional cross-validated smoothing parameter selection whereby left-singular vectors are cross-validated conditional on right-singular vectors, and vice versa. The concept can be realized as part of an alternating optimization algorithm. In addition to the penalization approach, we briefly consider two-way regularization with basis expansion. The proposed methods are illustrated with one simulated and two real data examples. Supplemental materials available online show that several “natural” approaches to penalized SVDs are flawed and explain why so.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.