Abstract

Thermopiezoelastic materials have recently attracted considerable attention because of their potential use in intelligent or smart structural systems. The governing equations of a thermopiezoelastic medium are more complex due to the intrinsic coupling effects that take place among mechanical, electrical and thermal fields. In this analysis, we deal with the problem of a crack in a semi-infinite, transversely isotropic, thermopiezoelastic material by means of potential functions and Fourier transforms under steady heat-flux loading conditions. The problem is reduced to a singular integral equation that is solved. The thermal stress intensity factor for a crack situated in a cadmium selenide material is calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.