Abstract

Per-poly fluoroalkyl substances (PFASs) are a group of synthetic fluorine compounds used in food packaging materials to repel water and fats. This study assessed the chemical migration of PFAS from different food contact materials, including cardboard, recycled cardboard, biopolymer, paper and Teflon trays, from various markets. Migration assays were conducted using Tenax® as a food simulant, which was optimized by subjecting it to three consecutive extractions with 3 mL of ethanol within an hour. The resulting extractions were combined and concentrated to 0.5 mL using a nitrogen stream. The analysis was performed using ultrahigh performance liquid chromatography (UPLC) coupled with ion-mobility (IMS) quadrupole-time-of-flight (QTOF) mass spectrometry, which provided a powerful and novel tool for identifying a library of targets containing collision cross section values (CCS) and increasing confidence in subsequent identifications. Eleven PFAS compounds belonging to the family of perfluorocarboxylic acid, perfluorosulfonic acid and perfluorooctanesulfonamidoacetic acid substances (PFCAs, PFSAs and FOSAAs) were found in packaging samples obtained from China, with migrant concentrations ranging 3.2 and 22.3 μg/kg. In contrast, no detectable levels of PFAS were observed in packaging samples obtained in Spain. All trays tested were deemed to be suitable for use as food contact materials due to the fact that their migrant values were lower than 0.025 mg/kg for PFOA and its salts, and lower than a maximum concentration of 1 mg/kg for PFOA-related compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.