Abstract

SUMMARY We consider a normal stationary process whose spectrum may contain harmonic components superimposed on a non-uniform continuous spectral density function. The problem of separating the discrete and continuous spectral components is discussed, and it is shown that the bandwidth of the spectral density function must be restricted, in relation to the number of observations, in order to make the problem tractable. Assuming only that this bandwidth is known, the presence of harmonic components is then detected by performing a “spectral” analysis on the tail of the autocovariance function, and a test is constructed based on the theory of random walks with absorbing barriers. A brief discussion of the case of non-normal processes is included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.