Abstract
This paper presents an analysis of three feature extraction techniques which are the shape-based, Zernike moments and Discrete Wavelet Transform for fastener recognition. RGB colour features are also added to these major feature extractors to enhance the classification result. The classifier used in this experiment is back propagation neural network and the result in general is strengthen using ten-fold cross validation. The result is measured using percentage accuracy and Kappa statistics. The overall results showed that the best feature extraction techniques are Zernike moment group 3 and DWT both with added colour features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Electrical & Electronic Systems Research (IEESR)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.